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ESTIMATION OF SHEAR STRENGTH USING FRACTALS 
AS A MEASURE OF ROCK FRACTURE ROUGHNESS 

By P. C. McWiliiams,1 J. C. Kerkering,2 and S. M. Miller3 

ABSTRACT 

Researchers at the U.S. Bureau of Mines investigated the use of close-range photogrammetry and 
subsequent stereo digitizing to obtain data from rock fracture roughness profiles. The photogrammetric 
process yielded results that were acceptable but somewhat inferior to those obtained by a mechanical 
profilometer. On the basis of this study, further pursuit of photogrammetry as a data collection method 
in mining is proposed. Fractal geometry was investigated as a means of measuring the roughness of 
rock fracture profiles. Four fractal algorithms were used: divider method, modified divider. method, 
box method, and spectral method. A comparison of the methods gave ambiguous results. Brown's 
modified divider method provided the best means of obtaining the fractal dimension. Shear strength 
estimates were obtained using the parameters of the modified divider method and Myers' Z2 measure. 
Because of differences in results when comparing the different ways of obtaining the fractal dimension, 
future users of fractals in studies of rock fractures are advised to cross-check their results carefully. 

lMathematical statistician (retired), Spokane Research Center, U.S. Bureau of Mines, Spokane, WA. 
2Mathematician, Spokane Research Center. 
3Mining engineer, Spokane Research Center, and professor of geological engineering, University of Idaho, Moscow, ID. 
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INTRODUCTION 

As part of its continuing efforts to characterize rock 
masses for enhanced design of mine openings, researchers 
at the U.S. Bureau of Mines studied rock fracture rough
ness and its influence on structural behavior. The original 
goal of this endeavor was to predict the shear strength 
of natural rock fractures as a function of two variables
fracture roughness and fracture hardness. As is often the 
case in research, two topics were of special significance to 
the Bureau researchers. 

First, c1ose~range photogrammetry and subsequent 
stereo digitizing were used as the data-collecting method. 
This method was contrasted with the more conventional 
approach of using a mechanical proftlometer to collect in
formation about a rock surface proftle. The primary moti
vation for using photogrammetry was that large amounts 
of information are required for the work. In addition, 
photogrammetry has potential as a data-gathering proce
dure in the field, both above and below ground. 

Second, fractal geometry [see Mandelbrot report (33)]4 
was proposed as a means of determining the roughness 
of rock surface proftles. It was hoped that by using frac
tal geometry, investigators could move away from the 
qualitative and subjective techniques presently used to 
obtain rock surface proftles, which originated with Barton 
(7-8) in 1973. However, the fractal methods did not prove 
to be a panacea for the problems encountered in quan
tifying roughness; rather, the ambiguities of the fractal 
algorithms became a topic of considerable research in
terest. Furthermore, since the inception of this work, the 
scientific community's attitude toward applicability of 
fractal methods has varied considerably and currently tilts 
in a more skeptical direction. 

This Report of Investigations (RI) endeavors to address 
three directly related topics: the photogrammetric data 
collection process, use of fractal geometry to describe sur
face roughness, and a procedure to estimate rock shear 
strength using roughness and hardness as input variables. 
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roughness data that were used in evaluating .fractal com
putation methods; and Steven Brown of Sandia Lab
oratories, Sandia, NM, for sharing his insights into the 
nature of fractals and methods of computing the fractal 
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PHOTOGRAMMETRY 

This project required a large number of X, y, z meas
urements5 on the natural fracture surfaces of rocks so that 
a quantitative roughness measurement for a given surface 
could be formulated. Traditionally, the way to generate 
data for these measurements has been to use a mechanical 
proftlometer. This instrument has a stylus that runs on x,-y 
axes and measures the height of the surface along a given 
x,-y proftle. Height readings along the proftle are taken at 
prescribed intervals (usually every 0.05 mm) by a probe 
that registers differences in voltage. Such an instrument 
can be quite accurate and reliable. 

The mechanical proftlometer, however, does have limi
tations. First, it is rather large, and therefore it is not eas
ily portable. Second, it requires a reliable power source. 
Third, it can usually measure only small specimens (up to 
a maximum of a foot square). Fourth, the rock surface 
must be small enough and of such a shape to fit on the 
proftlometer bed. 

These requirements make a typical mechanical pro
ftlometer cumbersome for field work, where the fracture 

surfaces must be measured in situ. Because some faces 
are up to 4 m across and can be either vertical or inclined, 
it is difficult to attach a mechanical proftlometer .. Con
sequently, an alternative data-recording device was sought 
that would be portable and yet would be as accurate as a 
mechanical proftlometer. For these reasons, photogram
metry was investigated as being more usable than a pro
ftlometer for gathering data on rock fracture surfaces. 

Advances in computers and photogrammetry during the 
last decade now make it possible to collect, reduce, and 
display digital elevation data efficiently at distances ranging 

4Italic numbers in parentheses refer to items in the list of references 
preceding the appendixes at the end of this report. 

!Throughout this report, the z-axis represents the height of a data 
point with a base value in the x-y plane. Thus, all two-dimensional 
profiles have the z-coordinate as the dependent variable and either the 
x-coordinate or the y-coordinate as the independent variable. All 
profiles are read perpendicular to either the x-axis or the y-axis. In 
three dimensions, z = f(x,y). 



from several centimeters to many meters. Such technology 
could provide a workable new approach to measuring rock 
fracture roughness, particularly with regard to field situ
ations where a wide range of fracture sizes are present. 
Because this technique relies on photographic stereo pairs, 
equipment is portable; a permanent record of the entire 
area of interest on the fracture surface (not just selected 
traces) is obtained; and the typically cumbersome tasks 
of rock sample collection and/or instrument setup are 
avoided. An additional benefit is that digitized elevations 
can be obtained from a pair of photographs by using a 
stereo analytic plotter in conJunction with a data acqui
sition system and a microcomputer. 

3 

Thus, the preferred means of data collecting was close
range photogrammetry. First, however, it was necessary to 
determine that results from this method were as good or 
better than those obtainable through the use of a mechan
ical profilometer. To this end, a comparative trace study 
and an accuracy and precision analysis were conducted. 

Photogrammetry is more thoroughly discussed in ap
pendixes A and B. Appendix A is a detailed description 
of the procedures used in characterizing rock surfaces 
using close-range photogrammetry. Appendix B is a com
parative evaluation of the use of close-range photogram
metry and a mechanical profilometer for data gathering. 

FRACTAL GEOMETRY AND ROCK FRACTURE ROUGHNESS 

INTRODUCTION 

In deriving his Q-statistic for rock mass classification, 
Barton (7) identified rock fracture roughness as an influ
ential variable. A numerical description of the roughness 
of a rock fracture surface is essential to the estimation 
of shear strength, dilatancy, and stiffness of the fracture. 
In this context, the term "fracture" refers to any semiplanar 
discontinuity in a rock mass (e.g., joint, bedding plane, 
fault). In engineering practice, the most commonly used 
measure of roughness is the joint roughness coefficient 
(JRC) proposed by Barton (7) and adopted by the Inter
national Society for Rock Mechanics (26). This coefficient 
ranges in value from 0 to 20 and is estimated either by 
visual matching of surface profiles with "standard" profiles 
(fig. 1) or by back calculation using peak shear strength 
and basic friction angle (obtained from direct-shear tests) 
in conjunction with joint-wall compressive strength. The 
first approach is highly subjective, while the second has 
little practical merit because roughness should preferably 
be used to predict shear strength, not vice versa. 

Since Barton's early work (7), other scientists have 
addressed the problem of quantifying his subjective rough
ness profiles. Ferrero and Giani (21) used a geostatistical 
approach in which variograms were employed as a means 
of expressing Barton's profiles. Lee, Carr, Barr, and Haas 
(31) used the divider method to establish corresponding 
fractal dimensions for Barton's 10 profiles. The JRC was 
then expressed as a second-degree polynomial with the 
fractal dimension as the independent variable. 

At the time this project was started, fractal geometry 
(32) was considered to be a most promising way of de
scribing geometric configurations. In recent years, inves
tigators have attempted to apply fractal geometry to objec
tive descriptions of rock fracture surfaces (3, 10, 15). Such 
work relies on the assumption that natural rock fracture 
surfaces can be represented by self-affine fractal models, 

which seem to be more generally applicable to geologic 
phenomena than self-similar fractal models. In essence, a 
self-similar fractal is a geometric feature that retains its 
statistical properties (statistical moments, to be more 
precise) through various magnifications. That is, the visual 
and statistical appearances of the feature are similar at 
all scales of magnification. In contrast, self-affine fractals 
remain statistically similar only if they are scaled differ
ently in different directions. Examples include the x- or 
y-coordinate of two-dimensional Brownian motion plotted 
as a function of time, and surface roughness profiles in 
which elevation is plotted as a function of horizontal 
distance (12). The fractal dimension D of such self-affine 
fractals has a value between the topological dimensions of 
1 and 2; values of 1.0 to 1.5 are commonly obtained for 
rock fracture profiles. Thus, D is potentially an appealing 
measure of surface roughness because it is a single value 
that is independent of scale. 

A literature search revealed four common methods 
for calculating fractal dimensions of roughness profiles: 
divider, or yardstick, method; modified divider method; 
box method; and spectral method. To evaluate these 
methods, roughness profiles were obtained from three 
natural fractures, each in a different rock type, using 
close-range photogrammetry and stereo digitizing. Fractal 
dimensions and other roughness measures were computed 
for the profiles and then evaluated and compared. 

ROUGHNESS PROFILES 

The three rock types studied were basalt, gneiss, and 
quartzite. The rock specimens were approximately 8 cm 
on a side, making the roughness profiles 6 to 7 em long. 
Ten parallel roughness profiles were digitized in each of 
two directions, identified as the x- and y-directions. Thus, 
20 profiles were obtained from each specimen, making a 
total of 60 profiles. The regular digitizing interval was 
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Figure l.-Examples of fracture roughness profiles. A, Basalt; B, gneiss; and C, quartzite. 

approximately 0.052 mm, producing about 1,000 obser
vations in the x-direction and 1,300 observations in the 
y-direction. 

Examples of the roughness profiles are shown in fig
ure 1. In general, a visual assessment of the entire set of 
profiles indicated that the quartzite fracture was the 
smoothest of the three, followed by the gneiss fracture, 
then the basalt fracture. Furthermore, some anisotropy 
in roughness was observed, especially for the gneiss frac
ture, where most of the x-profiles appeared smoother than 
the y-profiles. 

COMPUTATIONAL METHODS FOR ESTIMATING 
FRACTAL DIMENSIONS 

Of the four methods used to calculate fractal dimen
sions of the roughness profiles, the divider and box meth
ods rely on a deterministic approach, while the spectral 
method relies on a stochastic approach. The deterministic 
methods are illustrated in figure 2 and are described in 
more detail below. 

Divider Method 

The divider, or yardstick, method is best visualized by 
considering a pair of dividers set to a particular span and 
then IIwalked ll along the roughness profile. The number of 
divider spans (yardsticks) required to cover the entire 
profile is counted and then mUltiplied by the length of the 
divider span to give an estimate of the profile length. The 
divider span is set to another value, and the process is 
repeated several times to produce a discrete relationship 

between divider span and profile length. The two are re
lated linearly in log-log space according to the expression 

10g(L) = A + (1 - D) log(r), 

where L estimated profile length, 

A = y-intercept, 

and l' = divider span [adapted from Feder (20)]. 

Thus, slope b of the log-log plot = 1 - D or D = 1 - b. 

Modified Divider Method 

A modified divider method proposed by Brown (12) 
consists of using horizontal divider spans (x-increments) 
rather than walking the dividers along the profile. Thus, 
the incremental lengths or segments along the profile from 
Xi to Xi + 1 are summed to obtain the total estimated 
profile length for each given x-increment, which is denoted 
as r for this case. The above log-log relationship holds, 
where r = x-increment and D = 1 - b = slope of the 
log-log plot. 

Box Method 

Rather than use divider spans as the counting in
strument, the box method relies on small rectangular 
boxes. A box size is selected, which establishes a regular 
grid, and then the number of such boxes needed to cover 
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Figure 2.-Box and divider methods for estimating fractal dimensions. (L = estimated profile length.) 

the entire profile is counted. Two versions of the box 
method were used in this study, one taken from Brown 
(11) and one from Feder (20). Brown's approach requires 
that the box grid be formed by taking an equal number of 
divisions in the x- and y-directions, which maintains an 
aspect ratio consistent with that of the profile, and then 
determining the relationship between the number of 
divisions and the number of boxes. In Feder's approach, 
the relationship between a box-size multiplier and the 
number of boxes required to cover the profile is deter
mined. It was found that both methods provide similar 
estimates of D if the specified box sizes are comparable. 
For computational convenience, Brown's method was 
preferred, where D is estimated by 

10g(N) = A + D'log(g), 

where N = number of boxes required to cover the 
profile, 

and g number of box grid divisions in the x- and 
y-directions. 

In this case, D = slope of the log-log plot. 
In using the divider and box methods described above, 

appropriate adjustments were made to mitigate the cross
over length problem associated with roughness proflies, as 
discussed by~Brown (12). For the divider methods, the 
y-coordinate of the profiles was multiplied by 1,000. For 
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the box method, an equal number of box divisions were 
used in the x- and y-directions to ensure an aspect ratio 
equal to that of the profile. Analyses were also done with 
divider methods using no exaggeration of the y-coordinate 
values. 

Spectral Method 

The fractal dimension of a surface roughness profile 
can be related to the power spectral density S(F) of the 
profile, if one assumes a spectral density with power-law 
form, where S(F)<xF·b and F = frequency in units of cycles 
per millimeter. In this case, D is related to slope b of the 
spectral density (13) according to b = 2D - 5. 

Caution must be exercised when interpreting fractal 
results obtained from the spectrum, however, because 
assumptions of stationarity, ergodicity, and random phase 
may not be met by the profiles being studied (25). 

The spectral density of each roughness profile was 
estimated using the fast Fourier transform method as dis
cussed by Bendat and Piersol (9). This approach requires 
the investigator to select a tapering window and a spectral 
smoothing algorithm. 

APPLICATIONS OF COMPUTER 
ALGORITHMS TO DATA 

In applying the four computer algorithms-box, divider, 
modified divider, and spectral-it became apparent that 

there were difficulties specific to each method. For ex
ample, when using Brown's aspect ratio concept (11) with 
the box method, an equal number of divisions are made 
along both axes of the original profile data. The fractal 
dimension is computed from a derived log-log relationship, 
where the x-axis is the log of the aspect ratio and the 
y-axis is the log of the number of boxes intersected by the 
profile. The slope of a line fit to this log-log plot is the 
fractal dimension value. 

Inherent in this method is the hypothesis that a straight 
line is a good model for the log-log data (fig. 3). How
ever, there are at least three plausible but very different 
answers for the fractal dimension, varying from 0.94 to 
1.19, depending on which set of box sizes the user chooses. 

When using both divider methods, the procedures are 
similar. The x-axis of the derived plot equals the log of 
the divider span; the y-axis is the log of the corresponding 
profile length; and the fractal dimension equals 1 - slope 
of the log-log plot. In both methods, the log-log plots are 
similar in ambiguity, and the fractal dimensions can vary 
significantly, depending on the set of divider spans spec
ified for measuring the profiles. 

Even if a roughness profile reasonably meets station
arity and random-phase assumptions, fractal dimensions 
estimated using the spectral method can depend signif
icantly on user specifications for obtaining the spectral 
density of the profile. The two most apparent specifi
cations are the tapering window used to mitigate leakage 
and the algorithm used to smooth the spectral estimates 
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(9, 41). Repeated investigations of computed spectra of 
the roughness profiles showed that aliasing was not a 
problem (i.e., the spectra fell off to near zero at fre
quencies of 3 to 4 cjmm, much less than the Nyquist 
frequency of about 9.7 cjmm). Thus, leakage was the 
major concern, and even if a standard Tukey-Hanning 
smoothing function was consistently used for the spectral 
estimates and only the type of tapering window was 
varied,6 quite different fractal dimensions were obtained 
for a given roughness profile (fig. 4). 

Microcomputer programs written to calculate D were 
based on the four methods. Three of these programs were 

~e following tapering windows were used: cosine-bell with 2, 5, 
and 10 pet and full applications; Panen; and Welch. Estimated fractal 
dimensions varied from 1.34 (for 2 pet cosine-bell window) to 1.49 (for 
Welch window). 
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cross-checked with programs written by other computer 
programmers. The answers generated by the comparisons 
were quite consistent, giving the authors assurance that 
the computer programs were not sources of error. 

Experience in analyzing the 60 roughness profiles 
indicated that the divider method was the most difficult 
of the four methods to use consistently and still obtain 
reasonable estimates of fractal dimension. The divider 
method does not provide unique results, and estimates of 
D may vary by 10 to 20 pct for a given profile. However, 
some of this ambiguity can be mitigated by selecting those 
divider spans that require 30 to 200 intersections to cover 
the profiles, which have approximately 1,000 digitized 
points. In addition, there are several ways to deal with 
remainders left when the divider increments approach the 
end of the profile trace (3). It is recommended that the 

B 
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-6 -4 -2 o 2 4 -6 -4 -2 o 2 4 

LOG (FREQUENCY), 1/mm 

Figure 4.-Examples of log-log spectral plots showing the sensitivity of calculated fractal dimension to tapering. 
A, 2 pet cosine-bell window; 8, Welch window. 
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partial divider length required to reach the end of the 
profile be divided by the selected divider span and then 
added to the number of divider spans already accumulated 
(e.g., the fmal number of spans might be 80.25, where the 
remainder is one-fourth of the selected divider span). 

To alleviate the remainder problem when using the 
modified divider method, it is suggested that only those 
x-increments that terminate at an x-coordinate within 
0.005~ of the end of the profile (~ = horizontal length of 
profile) be used. In addition to using this criterion, when 
computing fractal dimensions for the 60 profiles, investi
gators made sure that the largest x-increments were those 
that required at least 20 repetitions to cover the profile 
being studied. 

When the box method was evaluated, the greatest 
success came when box sizes were used that allowed 20 to 
120 boxes to cover the profile. Again, this criterion was 
based on profiles having about 1,000 digitized points. With 
the spectral method, a 2 or 5 pct cosine-bell tapering win
dow provided the most consistent results. 

Thus, using the above guidelines for the various meth
ods, the fractal dimensions of all 60 profiles were com
puted and compared. 

ANALYSIS OF ROUGHNESS MEASURES 

Besides fractal dimension, there are several other meas
ures that can be used to quantify roughness along rock 
fractures. The two we investigated were the Z2 measure 
proposed by Myers (38) and the standard deviation of 
heights. 

Calculation of the Z2 measure for proflles is facilitated 
by using a slightly modified version of the original Myers 
definition (38), as proposed by Tse and Cruden (44): 

where 

and 

N 

1 N - 1 

---::"2 L (Yi + 1 - Yi)2 , 
M(ilx) i = 1 

number of digitized values, 

M number of intervals on x-axis = N - 1, 

ilx width of digitized x-increment. 

The Z2 measure is related strongly to the variance of 
slopes along the profile. To eliminate the effect of trends 

in the roughness proflles (i.e., regional slope) on the 
calculated standard deviation of heights, a linear trend 
was removed from each proflle before calculating its 
standard deviation. It is realized that this detrended 
standard deviation does not serve as an adequate measure 
of roughness in itself, but it was included as a standard 
reference value for comparing with other roughness 
measures. 

Comparison of Adjacent Profiles 

To investigate surface roughness variability, for each 
set of 10 parallel profiles, the auto correlations of the Z2 
measure and of the fractal dimension derived from the 
modified divider method were calculated. One of the ap
pealing aspects of fractal analysis is that the fractal di
mension of a topographic surface can be obtained by 
adding 1.0 to the fractal dimension of a single profile from 
that surface (32). However, the question arises as to 
which proflle to use when rock fractures are being studied; 
that is, are such profiles relatively similar along a fracture 
surface? The autocorrelation results shown in table 1 (an 
autocorrelation of 1.0 implies perfect correlation) indicate 
that roughness profiles can be quite different, even when 
taken parallel to each other. In this case, the parallel 
profiles in each set were spaced 50 mm apart. 

Table 1.-Autocorrelatlons of ~ and fractal dimension D 
for adjacent prOfiles on fracture surfaces 

Meas-
ure 

~ ... 
D .... 

Basalt Basalt 
x y 

0.351 -0.030 
.566 -.299 

Gneiss 
x 

-0.084 
-.056 

Gneiss 
y 

Quartzite Quartzite 
x y 

0.349 -0.072 0.228 
.101 .056 -.135 

Correlation of Roughness Measures 

Linear correlation coefficients were computed for the 
six roughness measures for each of the six profile series. 
Four of the measures were fractal dimensions calculated 
by the different methods: Db by box method, Dd by 
divider method, Dm by modified divider method, and D. 
by spectral method. Typical results are displayed in ta
ble 2. The negative correlation values indicate that the 
nonfractal roughness measures were inversely related to 
D estimates. Values of D computed by the two divider 
methods were the most strongly correlated, followed by 
those computed by the spectral method. The nonfractal 
measures of roughness were correlated strongly. 
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Surprisingly, the Ds-standard deviation and the Ds-Z2 
correlations were negative. This finding contradicts theo
retical relationships where variance of heights is the Oth 
moment of the spectrum and variance of slopes is the 
2d moment of the spectrum (13). Because computer
generated synthetic proflles produced correlations that 
agreed with the stated theory, the above contradictions 
may be caused by the scale dependence of Z2 and standard 
deviation and/or by the failure of the roughness proflles to 
be modeled adequately by random processes. 

Evaluation of Roughness Measures Using 
Visual Assessments of' Roughness 

Because the two different sets of roughness measures 
appeared to be so different when applied to these rock 
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fractures, the measures were evaluated using visual obser
vations of the roughness proflles. The 10 proflles for the 
gneiss x-direction series are shown in figure 5. 

To evaluate the performance of each rouglmess meas
ure, four investigators were asked to independently rank 
the roughness of prof'lles in each series on a scale of 1 
to 10 (1 was smoothest and 10 was roughest) according 
to visual observations. These roughness rankings were 
tabulated with rankings obtained using the six roughness 
measures, plus another parameter, Am, which is equal to 
the y-intercept of the log-log plot of the modified divider 
algorithm. These numbers were used to compute values 
of Kendall's nonparametric rank correlation coefficient 
(42). Typical rank correlation results are summarized in 
table 2 and illustrate the general conclusion that calculated 
fractal dimensions can be, and often are, negatively cor
related with visual rankings of roughness proflles. 

Table 2.-Roughness measures, gneiss x-direction series 

Db .•• " ............. . 
Dd ••................• 

Dm·················· . 
Ds ••...•....•.....•.. 
Z2 .................. . 
Standard deviation ...... . 

Profile: 
A .................. 
B .................. 
C .................. 
D .....•............ 
E .................. 
F .................. 
G ...........•...... 
H .................. 
I I ••••••••••••• ••• • 

J .................. 

Rank correlation coefficients 
versus visual rank ...... 

CORRELATION MATRIX 

1.000 

.551 1.000 

.580 .857 1.000 

.522 .793 .746 1.000 
-.288 -.848 -.677 -.828 
-.719 -.859 -.788 -.832 

SUMMARY OF PROFILES 

1.099 1.161 1.129 1.258 
1.158 1.192 1.123 1.246 
1.118 1.193 1.157 1.202 
1.159 1.094 1.103 1.191 
1.143 1.261 1.199 1.383 
1.122 1.155 1.128 1.309 
1.136 1.182 1.200 1.263 
1.146 1.183 1.147 1.274 
1.076 1.105 1.103 1.225 
1.041 1.084 1.058 1.124 

-.289 -.511 -.556 -.911 

3.569 
3.546 
3.592 
3.813 
3.377 
3.495 
3.573 
3.536 
3.731 
3.816 

.911 

1.000 
.792 

0.171 
.169 
.186 
.282 
.131 
.149 
.179 
.161 
.213 
.245 

-.867 

Standard Visual 
deviation rank 

1.000 

0.201 6 
.199 5 
.268 7 
.385 9 
.118 1 
.202 2 
.238 4 
.271 3 
.479 8 
.618 10 

.600 

I: 
I 
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ADDITIONAL TOPICS ON FRACTALS AS A MEASURE 
OF ROCK FRACTURE ROUGHNESS 

INTRODUCTION 

The work on shear strength used the gneiss specimen 
in the x-direction only (34). The work described in the 
following sections applies the fractal geometry approach to 
the gneiss y-direction and the quartzite and basalt x- and 
y-directions also. There were several topics investigated, 
including the effects of using enlarged photographs, the 
aspect ratio concept (11), the separate data set supplied 
by the Centre de Technologie Noranda, the use of pro
files versus three-dimensional modeling, and the fractal 
controversy. 

EFFECT OF ENLARGED PliOTOGRAPHY 

One possible source of error in the photogrammetric 
studies was the physical size of the photographs being 
read and digitized. Since the scanning dot size (0.05 mm) 
was quite large relative to the interval between data points, 
it was suggested that enlarging the photographs of the 
samples might provide more representative results. Thus, 
the photographs were enlarged 2.44 times. Care was taken 
to align traces exactly. For this work, gneiss x-direction 
readings were used. So that comparisons could be made, 
it was necessary to truncate the original readings to a 
smaller set of information (80 pct of original trace length); 
thus correlation values differed from those discussed in 
the section "Analysis of Roughness Measures" (compare 
table 3 with table 4). As before, 10 profile traces were 
analyzed to generate the set of derived fractal dimensions 
and Z2 measures. The y-coordinates were scaled two 
ways: with Brown's aspect ratio (11) and with a scale fac
tor equaling 1. The latter case is denoted as the original 
data space analysis throughout the rest of this RI. "Reg
ular" refers to the standard-sized photographs while "en
larged" refers to the enlarged photographs. 

Aspect Ratio Analysis 

As explained earlier, linear correlation coefficients were 
computed for the four roughness measures and for the ~ 
measure (table 4). It can be seen that the same basic 
trends hold: that the fractal measures were not strongly 
correlated with each other and were, with one exception, 
negatively correlated with the Zz measure. The fractal 
measures were slightly better self-correlated for the data 
set from the enlarged photographs than for the data set 
from the regular photographs, while the set of enlarged 
profile traces generated more robust fractal dimension 
values (i.e., higher mean value and greater variation). This 

was true when using the box, divider, and modified divider 
methods. However, the spectral method did not display 
this robust quality; here, the fractal dimension values from 
the regular photographs had a higher mean and greater 
variation. 

Table 3.-Correlatlon matrix for roughness 
measures and shape parameters for 
nonlinear, shear-strength envelope 

A B D 

A ..... 1.000 
B ..... -.489 1.000 
D ..... .637 -.578 1.000 
I ...... -.467 .785 -.267 1.000 

Zz 

Zz -.775 .678 -.704 .534 1.000 

Table 4.-Correlatlon matrix for roughness 
measures using aspect ratio method, 

gneiss x-direction series 

REGULAR PHOTOGRAPHS 

Db .... 1.000 
Dd .... .273 1.000 

Dm'" . .471 .827 1.000 
Ds .237 .846 .588 1.000 

Zz .051 -.882 -.608 -.822 1.000 

ENLARGED PHOTOGRAPHS 

Db 1.000 
Dd .665 1.000 
Dm'" • .695 .817 1.000 
Ds .672 .822 .590 1.000 

Zz .... -.522 -.742 -.390 -.919 1.000 

Another comparison of interest was the correlation 
between the regular and enlarged results for the 10 profile 
traces analyzed by the five measures of roughness. The 
results are shown in table 5. 

Table 5.-Roughness measure correlations 
between regular and enlarged data set 

Method Correlation coefficient 

Db ..•............ 0.584 
Dd •.•••.......••. .980 
Dm>.. . . .. .• .... . . . .777 
Ds .•.....•••••..• .935 
Zz ............... .976 

If one were to hypothesize similarities between the reg
ular and enlarged photographs, high correlation values 
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would be anticipated, and in fact, in three of the five cases, 
high correlations were obtained. 

Rank correlation coefficients (42) were computed com
paring the visual assessments with the roughness measures. 
Results are summarized in table 6. 

Table 6.-Rank correlation coefficients of roughness 
measures versus visual rank using aspect ratio 
method, gneiss x-direction series, v-coordinate 

Regular ... 
Enlarged .. 

-0.951 
.335 

-0.042 -0.733 -0.697 0.867 
-.564 -.685 -.418 .822 

Both photographic methods generated similar results; 
only the Z2 measure correlated positively with the visual 
rankings, while the four fractal methods correlated 
negatively (in seven of the eight cases) with the visual 
assessments. 

Original Data Space Analysis 

Only two measures, Dm and Z2' were used. For the 
regular photographs, the correlation between Dm and Z2 
was 0.945; for the enlarged photographs, the correlation 
between Dm and Z2 was 0.954. This is quite significant in 
that the fractal measure was strongly positively correlated 
with the Z2 measure in contrast with results obtained by 
comparing aspect ratios. The correlation for Dm (regular 
versus enlarged data set) was 0.969, which was also a 
better answer than the 0.777 obtained for the aspect ratio. 
Correlations between Dm and the visual rankings were 
0.764 (regular data) and 0.733 (enlarged data). Two major 
conclusions were reached: 

1. The regular and enlarged data sets behaved similarly 
when using a scale factor of 1, and 

2. A scale factor of 1 promoted better agreement 
between Dm and Z2 than did previous analyses of the 
gneiss x-direction data. This point will be expanded upon 
in the section "Gneiss y-Direction Analysis." 

Thus, it was felt that the enlarged photographs gener
ated results similar to those obtained from the regular
sized photographs, and that using enlargements will not 
produce more satisfying results. 

FRACTAL DIMENSION AND ASPECT 
RATIO CONCEPT 

A perplexing problem facing users of the fractal dimen
sion as a measure of proftle roughness is the small magni
tudes of the generated fractal dimension values. Using the 
divider method, the authors generated a fractal dimension 
of 1.3 for the coast of Britain and 1.52 for the coast of 

Norway (20). Both coastlines represent highly perturbated 
proftles, yet these fractal dimensions are rather modest. 
In studying proftles taken from rock surfaces adjacent to 
Libby Dam, MT, Carr and Warner (15) attained fractal 
dimension values of 1.0031, 1.0032, 1.0220, etc. Applying 
the divider technique to nonscaled proftles for the rock 
surfaces studied here generated fractal dimensions similar 
to those found by Carr and Warner. Furthermore, when 
the divider technique was applied to fractal-generated 
proftles of known dimensions (e.g., 1.2, 1.3, 1.5), the fractal 
dimensions gave results much less than these known 
dimensions. The divider method is not unique with regard 
to this shortcoming; the box-counting method presents 
similar problems. 

Two authors, Wong (46) and Brown (11), have recog
nized and dealt with this problem, which is referred to as 
the crossover length problem and is best dermed in terms 
of the basic divider method. There exists a critical divider 
length (crossover length) such that if the chosen divider 
radii are larger than the crossover length, the fractal 
dimension will be very close to unity. Brown suggests 
solutions for the crossover problem as follows: 

1. For the divider method, multiply the z-coordinate 
(only) by increasingly large values, e.g., 10, 100, 1,000, ... 
If one does this, the fractal dimension will indeed asymp
tote to a value that is not necessarily near unity, but this 
value should be morel'epresentative of the true fractal 
dimension.7 This transformation of the z-coordinate only 
may result in an extremely exaggerated portrayal of the 
original trace. Effectively, all variability has been trans
ferred to the z-variable alone. 

2. For the box-counting method, choose an equal num
ber of intervals (for division into box size) along both the 
x- and z-axes. Brown (11) develops the mathematics for 
this option.s Using Brown's aspect ratio concept provides 
excellent verification for generated pro(lles of known frac
tal dimension, thus giving credence to the consistency of 
this approach. 

Several scientists question transforming a proftle so 
drastically in order to attain a consistent fractal dimension. 
The authors of this RI used the aspect ratio concept 
exclusively for two symposium papers (36-31). In these 
papers, the authors endeavored to look at the data with 
and without using aspect ratio algorithms. At this junc
ture, it seems unclear as to whether one should commit 
unequivocally to either school of thought on the subject of 
aspect ratio. 

7Brown's approach (11) circumvents one's actually finding the critical 
crossover length, which is certainly a useful technique. 

Syhis approach provides a very pragmatic artifice for users of the box 
method because determination of the box's physical dimensions is critical 
to generation of a "correct" fractal dimension. Feder (20, pp. 186-188) 
demonstrates varying the fractal dimension from 1.03 to 1.51 based on 
the dimensions of the boxes chosen. 



EFFECTS OF PARAMETER INPUT 
ON FRACTAL DIMENSION 

The selection of parameter values has a marked effect 
on the calculated fractal dimension. When using fractal 
algorithms, the user must be aware that one cannot just 
operate on automatic pilot and generate significant an
swers. Two illustrations are provided, one relative to the 
box algorithm, the other to the modified divider algorithm. 

Parameter Effects-Box Algorithm 

An artificially generated profile trace with 1,200 data 
points and a known fractal dimens'ion of 1.3 was used as 
the example (fig. 6). The dependent variable had a mean 
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of 7 .212 and a standard deviation of 1.295. The generation 
routine was a spectral analysis synthesis method proposed 
by Saupe (5, pp. 93-94). The advantage of this generated 
profile was that the property of self-affinity was guar
anteed. Visually, one would feel comfortable in assuming 
that the trace was of a ,fractal nature. 

The set of aspect ratio values that proved most suc
cessful relative to the bulk of the experimental data was 
used. The computer output is listed in table 7. 

The fractal dimension 1.166 obtained earlier was cer
tainly unsatisfactory relative to the expected value of 1.3. 
However, if the user were to choose aspect ratio input 
values running consecutively from 2 to 20, the generated 
fractal dimension would be 1.335, with a correlation coef
ficient value of 0.9965. This seems more in line with 
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expectations, but the boxes for the low aspect values (2 
and 3) were completely filled! Thus, the curves were 
loaded if this selection was made (table 7). 

Table 7.-Computation of fractal dimension using box 
method (expected value = 1.3) 

Input values consistent 
with prior analysis! .. 

Input values varled2 •• 

First point removed3 .. 

Aspect ratio Number of boxes 

10 45 
15 73 
20 103 
22 114 
25 132 
27 145 
30 166 
35 198 
40 221 
45 264 

2 4 
3 9 
4 13 
5 18 
6 22 

18 89 
19 92 
20 103 
3 9 
4 13 
5 18 
6 22 

18 89 
19 92 
20 103 

1 Fractal dimension = 1.166; correlation coefficient = 0.9997. 
2Fractal dimension = 1.335; correlation coefficient = 0.9965. 
3Fractal dimension = 1.269; correlation coefficient = 0.9987. 

The point (2,4) log values of (0.3010, 0.6021) were 
exercising undue influence on the slope of the fitted line 
and were a candidate for dismissal as an outlier. This de
cision could be justified on other grounds because 100 pct 
of the boxes were filled when only two subdivisions were 
made on the coordinate axes. If the point (log 2, log 4) 
were left out, but (log 3, log 9), which represents another 
set of totally filled boxes, were allowed to remain, then 
the point (log 3, log 9) lies on a line consistent with the 
remaining set of values (figure 7 and table 7). 

By removing one data point, the fractal dimension was 
changed from 1.335 to 1.269. This parameter variation 
could be continued through many possible combinations 
of aspect values and would generate changes in the fractal 
dimension. This exercise illustrates how the selection of 
input values would change the fractal dimension, in this 
instance, from 1.666 to 1.335. (Again, recall that the 
expected fractal dimension is 1.3.) These changes were 
not a consequence of using the aspect ratio method. 
Feder (20, pp. 186) changes the rectangular dimensions of 

the covering of boxes, and in so doing, varies the fractal 
dimension from 1.03 to 1.51. Thus, the user's selection 
of input values can directly affect the resulting fractal 
dimension, certainly not a desirable situation when one 
is seeking invariance or stability of answers from a 
procedure. 

Modified Divider Algorithm and Scaling 
Factor Variations 

Earlier, the modified divider technique was used in 
conjunction with a z-coordinate (i.e., trace height) scaling 
factor to alleviate the crossover length problem. A set of 
profile traces with given fractal dimension values of 1.05, 
1.2, 1.3, 1.4, and 1.5 and a sample size of 1,200 was gen
erated by spectral synthesis (5). Table 8 shows the pro
gression of the fractal dimension values as a function of 
the scaling factor. 

Table B.-Effect of scaling factor on fractal dimension 
computations using modified divider algorithm 

Generated fractal Z-coordlnate scale factor 

dimension 5 10 100 

1.05 ............. 1.012 1.080 1.110 1.132 
1.20 ............. 1.038 1.174 1.213 1.240 
1.30 ............. 1.079 1.261 1.301 1.327 
1.40 ............. 1.147 1.362 1.398 1.418 
1.50 ............. 1.246 1.467 1.497 1.513 

1,000 

1.132 
1.241 
1.327 
1.418 
1.513 

Several points become apparent. First, a scaling factor 
of 1.0 underestimated the expected (generated) fractal 
dimension values in all cases. Second, the expected fractal 
dimension of 1.05 was poorly estimated throughout. Third, 
a scaling factor of about 10 seemed to be a best choice for 
this set of data in that the expected fractal dimensions 
were reasonably close to the derived values. Fourth, the 
fractal dimension values asymptote to a constant as the 
scale factor increased. 

As before, a potential problem arises in that user input 
of best scale factor is implied. With experimental data, 
there are no guidelines as to what the best choices might 
be, leaving the user with difficult decisions as to what 
scale factor to choose. In previous work, the asymptotic 
approach was chosen, using a scale factor of 1,000. 

GNEISS y-DIRECTION ANALYSIS 

For the same sample used in the section "Analysis of 
Roughness Measures," 10 proflles oriented along the y-axis 
were also digitized using photogrammetry. Four fractal 
dimension algorithms and two statistical algorithms were 
applied to these proflles. Descriptive statistics were com
puted relative to these derived measures of the 10 traces, 
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Figure 7.-Effect of one data point on calculated fractal dimension. 

giving values for mean, median, standard deviation, stand
ard error of the mean, etc. Correlations were established 
between the six algorithms being considered (table 9). 

Table 9 is to he compared with table 2. In table 2, 
there is a nice dichotomy between the four fractal 
measures-Db' Dd, Dm, and D.-and the statistical 
measures-Z2 and standard deviation. The fractal meas
ures are positively correlated with each other and nega
tively correlated to the statistical measures. The two 
statistical measures are positively correlated. In table 9, 
three of the fractal measures-Db, Dd, and Dm-are posi
tively correlated with each other, but D. does not con
form to family behavior as before. Furthermore, Z2 is now 
positively correlated with the fractal measures; only the 
standard deviation stands alone . 

Table g.-Correlation matrix for roughness measures USing 
aspect ratio method, gneiss y-direction series 

Db ...... 
Dd •••••• 
Om····· . 
Os •••••. 
Z2 ...... 
Standard 

deviation 

1.000 
.513 
.587 
. 433 
.561 

-.572 

1.000 
.924 

-.054 
.167 

-.793 

1.000 
-.007 
.412 

-.813 

D. 

1.000 
.432 

-.139 

~ Standard 
deviation 

1.000 

-.323 1.000 

Four investigators were again asked to rank the 
roughness measure of the 10 gneiss y-profiles subjectively 
(fig. 8). Their visual rankings were then compared with 
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the ranking obtained by the six roughness measures, after 
which Kendall's nonparametric rank correlation test (42) 
was applied. Results are tabulated in table 10. 

Table 10.-Rank correlation coefficients of roughness 
measures versus visual rank, gneiss 

x- and y-dlrection series 

D. Z2 Standard 
deviation 

x-direction -0.289 -0.511 -0.556 -0.911 0.911 -0.867 0.600 
y-dlrectlon -.244 -.556 -.368 .135 .822 .252 .378 

These results were not as encouraging as those shown 
for the x-direction profiles, and only Am was highly cor
relat~d with the visual assessment. 

Another way to compare the answers in the x- and y
directions is to consider the 10 x-traces and the 10 y-traces 
as populations and to use a statistical t-test to test for 
equality of means. Table 11 summarizes the results and 
demonstrates the anisotropic nature of the gneiss rock 
sample. 

Table 11.-Comparlson of six roughness 
measures using aspect ratio method 

on gneiss specimen, x- versus 
y-dlrectlon 

Method 

Db ............... . 
Dd ............... . 

Om··············· . 
D •................ 
Z2 .............. .. 
Standard deviation ... . 

t-value 1 

1.86 
2.80 
3.63 
2.03 

.48 
3.31 

lDegree of freedom are greater than 11 in 
all cases. 

Similar analyses were applied to the x- and y-directions 
of a basalt sample and a quartzite sample. The anisotropy 
shown in the gneiss sample was also apparent in both the 
basalt and the quartzite samples. 

In summary, the y-direction analysis of the gneiss 
sample did not generate results that were consistent with 
those obtained for the x-direction analysis. Furthermore, 
the y-direction results would not lead to the same ap
proach to shear strength modeling as used in the section 
"Shear Strength Estimation." However, the data for the x
and y-directions for the gneiss, basalt, and quartzite sam
ples were fit reasonably well by the model developed in 
that section. With regard to the most important conclu
sion of this RI-the ambiguities of the fractal dimension 
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measures and their contrast with the statistic measures
work with the gneiss y-profiles and the basalt and quartz
ite x- and y-profiles further substantiated the ambiguity 
premise. 

ORIGINAL DATA SPACE ANALYSIS, 
GNEISS x- AND y-DIRECTIONS 

Brown's aspect ratio method (11) was used in the 
algorithms for the box, regular divider, and modified 
divider computations. As stated earlier, not all researchers 
are in favor of the aspect ratio technique. In this work, 
the z-coordinates (trace heights) of the profile traces were 
multiplied by 1,000 in computing the fractal dimensions for 
the divider and modified divider methods. The aspect 
ratio artifice was used in determining the number of 
divisions of both axes when applying the box-counting 
technique. The work that follows does not apply the 
scaling factor of 1,000 to the divider methods. The 
remaining fractal dimension algorithms (for Db and D.) 
and statistical algorithms (~ and standard deviation) were 
computed as before. The goal was to find out whether 
better results were obtained using original data space 
information than were obtained using the scaling factor. 
The ensuing correlation matrices are shown in table 12. 

Table 12.-Correlation matrix for roughness measures using 
original data space Input, gneiss x- and y-dlrectlon series 

Db ."., . 
Dd .,., .. 
Om····· . 
D. ...... 
Z2 .. "" 
Standard 

deviation 

Db , ..... 
Dd . ..... 
Om····· . 
D. ...... 
Z2 ...... 
Standard 

deviation 

D. 

GNEISS x-DIRECTION SERIES 

1.000 
.034 1.000 

-.050 .966 1.000 
.522 -.659 -.720 1.000 

-.288 .933 .925 -.828 

-.719 .554 .534 -.832 

GNEISS y-DIRECTION SERIES 

1.000 
.071 1.000 
.397 .450 1.000 
.443 -.100 .270 1.000 
.561 .367 .860 .432 

-.572 -.056 -.551 -.139 

1.000 

.792 

1.000 

-.323 

Standard 
deviation 

1.000 

1.000 

The results in table 12 are to be compared with those 
in tables 1 and 8. There is no marked improvement in 
the correlations among the four fractal dimension algo
rithms, although in table 1, Dd and Dm are highly cor
related (r = 0.966). But the data in table 12 show a low 
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correlation between Dd and Dm (r = 0,450). Zz correlates 
rather well with the fractal measures. The standard devia
tion does go its own way, being negatively correlated with 
all the fractal methods. Unfortunately, it is also nega
tively correlated with the other statistical measure, Zz. 
Thus, when using the original space data, some cor
relations improve, while other correlations do not. 

For the visual ranking of the gneiss profiles, the use of 
Kendall's rank correlation analysis (42) generated table 13. 

Table 13.-Rank correlation coefficients 
using original scale data, roughness 

measures versus visual ranking, 
gneiss specimens 

x-direction 
y-direction 

0.750 
.315 

0.841 
.225 

Using the original scaled data gave much better re
sults for the divider algorithms in the x-direction, but this 
comparison was rather inconclusive for algorithms in the 
y-direction. Augmenting this result with the preceding 
correlation matrices, the conclusion was that using the 
original scaled data represented no particular advantage 
over using the aspect ratio approach. In particular, the 
ambiguities between the fractal measures remained an 
important problem. 

FRACTAL ALGORITHMS APPLIED 
TO NORANDA DATA SET 

A reasonable question that must be addressed is: Are 
the fractal algorithm anomalies particular to the Bureau's 
Spokane Research Center (SRC) photogrammetric data 
set? To provide a partial answer, SRC researchers were 
fortunate to obtain a set of rock profile data collected by 
Noranda engineers. Noranda investigators hoped that a 
fractal dimension analysis would provide additional sci
entific insights, while SRC researchers appreciated the 
opportunity to verify fractal work using an independent set 
of profile information. 

Profile traces were collected with a mechanical pro
filometer from a variety of sites. Typical profile lengths 
(fig. 9) were 100 em, with over 800 usable data points per 
trace. (Profile lengths were over 10 times those of the 
SRC data, although the number of data points per profile 
trace was very similar.) Nine profile traces were coIlected 
per joint surface; three traces were oriented in a horizontal 
direction, three traces at 45°, and three traces in a vertical 
direction. Eighteen parameters were measured on each 

profile, including asperity angle, high and low peak values, 
amplitude parameters, and the Zz measure. The Zz meas
ure provided a means of verifying that the Noranda data 
were properly transmitted for use at SRC. 

Three sets of joints were selected from the Noranda 
data file, and three fractal algorithms, Db. D d, and D m, 

were derived from the nine profile traces contained on 
a single joint surface. The aspect ratio was not applied 
when computing Dd• A representative set of Noranda re
sults is shown in table 14. Then, to verify that the results 
were not unique, two other joint sets were analyzed; the 
results are shown in table 15. 

Table 14.-Fractal dimensions and ~ for Noranda 
Joint set NS2J1 

Profile Db Dd Dm ~ 
H211 1.154 1.0048 1.330 0.238 
H212 1.082 1.0050 1.268 .323 
H213 1.099 1.0055 1.274 .318 
V211 1.096 1.0067 1.139 .346 
V212 1.136 1.0052 1.194 .241 
V213 1.111 1.0023 1.166 .176 
A211 1.122 1.0034 1.287 .202 
A212 1.168 1.0034 1.312 .184 
A213 1.099 1.0043 1.330 .311 

Table 15.-Correlation matrix for roughness 
measures, Noranda Joint sets 

NORANDA JOINT SET NS2J1 

Db 1.000 

Dd -.335 1.000 
Dm ...•• .415 -.223 1.000 

~ -.713 .838 -.169 

NORANDA JOINT SET NS1J1 

Db 1,000 

Dd .076 1.000 
Dm •.... -.255 .158 1.000 

~ .027 -.993 -.197 

NORANDA JOINT SET NS1J5 

Db 1.000 
Dd .386 
Dm . .••• .552 
~ ..... .201 

1.000 
.272 
.932 

1.000 
.284 

1.000 

1.000 

1.000 

The expectation of high correlations was tempered by 
the fact that the Noranda traces were not collected as 
uniformly as were the SRC data. Here, nine traces per 
joint surface are included, but the traces are oriented into 
three triplets going in three different directions. None
theless, the joint surface provided a basis of commonality, 
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and if the measures of roughness are uniform or consist
ent, it is to be expected that the resulting correlations 
should have reasonably high values as before. 

The matrices displayed in table 15 seem to verify the 
SRC results. The intercorrelations between the fractal 
measures are again disappointing; in fact, the only high 
correlations in table 15 are between Dd and Z2' Unfortu
nately, the correlation between Dd and Z2 reverses alge
braic sign for joint set NS1J5, thus negating positive 
speculation about the interrelationship of these two vari
ables. Therefore, no new research directions or conclu
sions relative to fractal dimension measures evolved after 
considering the N oranda data. 

FRACTAL CONTROVERSY 

Much of the work discussed in this report was predi
cated on using the fractal dimension as a potential meas
ure of the roughness of a rock joint surface. However, 
the fiel<;l of fractal geometry evolved considerably during 
the period this research was being undertaken (1987-91). 
Many reputable scientists from many disciplines have 
written scholarly papers in which fractal geometry served 
as a major research tool (16, 29, 45, 48), particularly in the 
earth sciences. In 1985, Barton and Larsen published such 
a paper, "Fractal Geometry of Two-Dimensional Fracture 
Networks at Yucca Mountain, Southwestern Nevada" (6). 
The work of Brown (11-13) has been previously cited. 
The article by Aviles, Scholz, and Boatwright, "Fractal 
Analysis Applied to Characteristic Segments of the San 
Andreas Fault" (3), was published in 1987. Papers have 
been published relating the fractal dimension with earth
quakes (43). In a recent paper by Coughlin and Kranz 
(17), the earthquake concept was successfully applied to 
relating the fractal dimension with rock-burst-associated 
seismicity. Feder (20) is an excellent practical source that 
contains many scientific applications. 

Certainly the visual geometry generated by fractal tech
niques has captured the imagination of scientists, scholars, 
and others. As a generator of surfaces, fractal geometry 
has proven to be most successful. Beautiful two- and 
three-dimensional pictures have been produced by fractal 
generators, some of which were attractively displayed in 
a volume entitled "The Science of Fractal Images," by 
Bamsley, Devaney, Mandelbrot, Peitgen, Saupe, and Voss 
(5). 

However, in spite of the positive applications of frac~ 
tals, there is increasing criticism of the field of fractal 
geometry. Many practitioners have found that fractals are 
not necessarily the. solution to their particular scientific 
problem. Fox's article (22) pointed out discrepancies 

between theory and empirical results with regard to using 
spectra to compute the fractal dimension. This is very 
significant, for most of the theoretical basis for the 
fractal dimension is derived from spectral considerations. 
Gilbert's article (24) also referred to untidy problems 
when using the spectral approach. In a very provocative 
set of articles and answering correspondence (4, 30, 33), 
two noteworthy opinions were put forth. Kranz (30) crit
icized the field of fractal geometry, stating that "Fractal 
geometry has not solved any problems. It is not even clear 
that it has created any new ones." A significant letter to 
the editor in the journal "The Mathematical Intelligencer" 
putting the field of fractals in a somewhat unfavorable 
light was then contributed by Brooks (10), who was a co
worker with Mandelbrot on many early fractal endeavors. 
An article entitled "Fractal Fracas" appeared in "Science" 
and summarized (as of 1990) the controversy over fractal 
geometry (40). Among the topics discussed was the con
sensus of the mathematical community over the "legit
imacy" of fractals. Axler (4), publisher of the "The Math
ematical Intelligencer," stated that a majority of the 
mathematicians line up against the proponents of fractal 
geometry. 

The authors' involvement with fractals has focused on 
computing the fractal dimension of proftle traces and 
trying to use that dimension as a measure of roughness. 
Results have been disappointing, particularly with regard 
to the anomalies between the various fractal algorithms. 
These efforts could be easily dismissed by stating that 
the proftles were neither self-similar nor self-affme, thus 
implying that the fractal dimension was a redundant exer
cise. However, establishing the properties of self-similarity 
or self-affmity is difficult, particularly for empirical data. 

In his Ph. D. thesis, Piggott (39, p. 115) used statisti
cal, geostatistical, and fractal methods as measures of 
the roughness of a number of different surface profiles. 
The author concluded "that statistical and geostatistical 
analyses are the most appropriate means of quantifying 
fracture surface topography under the experimental con
ditions described in this chapter. Used in conjunction, the 
procedures describe both the statistical and spatial dis
tribution of surface elevation in a manner amenable to 
analytical modelling of fracture properties. Fractal and 
spectral methods may yield superior descriptions of surface 
topography under different experimental conditions." 

Some other authors who have enjoyed success using the 
fractal dimension postulate that the proftles are self-affme, 
rather than attempting to prove that this condition exists. 
Other users of fractal geometry seem to implement the 
technique without consideration of self-similarity or self
affmity. Based on the preceding discussion, the authors 
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recommend that future researchers should carefully weigh 
the pros and cons of the fractal geometry controversy 
before making their research commitments. 

CONTINUING RESEARCH 

Three research efforts using fractal dimensions are 
continuing at SRC. In photogrammetry, it is imperative to 
measure its effectiveness relative to larger scale situations. 
For this reason, a field study program will begin soon, 
using photogrammetry first on rock outcrops, then on rock 
surfaces underground. 

Three-dimensional fractal analysis is a second area of 
interest. While there are several algorithms available 
for two-dimensional profile work, three-dimensional algo
rithms are scarce. One such algorithm requires even spac
ing in the x-y plane; the data are not amenable to this 
condition. 

Estimated semivariogram functions have been used to 
obtain fractal dimensions for rock fracture profiles (39), 
where it is assumed that the roughness profiles are 
modeled effectively with a self-affine fractal model. In 
such cases, a log-log plot of the semivariogram yields 
data amenable to linear regression. The slope b of the re
gression line is then used to estimate D using the formula 
D = 2 - b/2. 

-------.--------~ 
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Because semivariograms also can be used for surfaces, 
a topological D, rather than a profile D, is available. For 
the topological D, the formula is 

D = 3 - b/2. 

Work is progressing along these lines, with the goal 
being to obtain an estimate of the fractal dimension of the 
entire fractal surface while also investigating anisotropic 
properties of surface roughness. 

Finally, another two-dimensional profile of a fractal 
dimension algorithm is being investigated. This method, 
called the variation method, is attributed to Dubuc, 
Roques-Carmes, Tricot, and Zucker (19). These authors 
claim that the variation method is superior to the algo
rithms described in the present RI. The variation meth
od involves dividing the x-axis of the. data into sets of 
bins, choosing a set of intervals about the bin centers, 
computing maximum and minimum z-values in the in
tervals, summing the differences between corresponding 
maximum-minimum values, and obtaining a fractal dimen
sion from an ensuing log-log plot. The initial computer 
programming has been completed, but reliable reportable 
results are not available at this time. 

SHEAR STRENGTH ESTIMATION 

INTRODUCTION 

Using the results obtained from analyzing the gneiss 
x-direction series of profiles, it was decided to attempt 
to model shear strength as a function of three parameters: 
fractal dimension, fractal intercept obtained by the modi
fied divider algorithm, and Myers' Z2 measure. These pa
rameters were selected because of their high correlations 
with the visual rankings of the profiles (table 10). 

Roughness profiles from six clean fractures were 
digitized using close-range photogrammetry and automated 
stereo digitizing. Two of the fractures were contained in 
basalt specimens, two in gneiss specimens, and two in 
quartzite specimens. The rock specimens were trimmed 
to be approximately 8 cm on a side, making the roughness 
profiles 6 to 7 cm in length. This size was appropriate 
for subsequent casting of the specimens with quick-setting 
cement to produce testable direct-shear specimens. Ten 
parallel roughness profiles were digitized in each of two 
directions, identified as the x- and y-directions. Thus, 
20 profiles were obtained from each specimen, making a 
total of 120 profiles. To avoid generating excessively large 
amounts of data, the 'regular digitizing interval was approx
imately 0.2 mm, which produced about 300 observations 

along each profile. Figures 5 and 6 show the roughness 
profiles for the samples. 

The estimated roughness measures were averaged for 
each set of 10 parallel profiles (table 16). Autocorrelation 
calculations for each of the roughness measures indicated 
that adjacent profiles (spaced about 5 mm apart) were 
independent of each other with regard to estimated 
roughness. This confirmed earlier results regarding the 
independence, variability, and uniqueness of adjacent 
profiles, implying that it would be difficult to select one 
single profile as representative of the entire fracture 
surface. 

DIRECT-SHEAR TESTING 

The six specimens containing the natural fractures were 
sheared with a direct-shear apparatus in SRC laboratories 
at a rate of 0.3 mm/min. Applied normal stresses were 
purposely kept low (i.e., less than 25 mt/m2) to avoid 
extensive damage to fracture surfaces. Each specimen was 
sheared at six normal loads in the x-direction and six in 
the y-direction. Then one of the directions was selected 
for shearing at slightly higher normal stresses (i.e., up to 
about 80 mt/m2). 
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Table 16.-Summary of averaged roughness measures and results 
of direct-shear tests for six fractures 

Averaged roughness Direct-shear tests, 
Fraoture Direotion measures peak strength envelopel 

D Interoept ~ A B ¢o 

BASALT 

x 1.228 3.917 0.338 2.1060 0.9119 58.3 
Y 1.286 3.953 .278 1.7661 .9656 58.1 

2 x 1.276 3.753 .451 1.5986 .8814 47.1 
2 Y 1.168 3.926 .257 1.7591 .8590 48.0 

GNEISS 

1 x 1.185 3.632 0.153 1.9481 0.7139 40.4 
1 Y 1.211 3.686 .143 2.1583 .7393 45.1 
2 x 1.208 3.728 .258 1.6723 .7827 43.1 
2 Y 1.168 3.709 .143 2.0555 .7842 48.9 

QUARTZITE 

1 x 1.212 3.582 0.149 2.2478 0.7277 44.9 
1 Y 1.146 3.728 .153 2.2544 .7606 47.9 
2 x 1.254 3.859 .327 1.9678 .8073 48.0 
2 Y 1.154 3.854 .196 2.2224 .8083 51.8 

A, B Curve parameters. 
D Fraotal dimension. 

lPower model Is 7' ~ A O"~; friotion angle ¢o is based on linear envelope. 

Output from a shear test can be displayed as a graph 
with shear load plotted against shear displacement 
(fig. lOA). Using the peak shear strength observed for 
each trace, the laboratory data were reduced to provide 
estimates of shear-strength t as a function of normal stress 
an (fig. lOB). In most situations, a nonlinear power curve 
pl'Ovided a better model for describing the shear-strength 
envelope than did a linear model. This result concurs with 
observations previously published by Jaeger (28) and 
Miller and Borgman (35). Shearing direction had a signif
icant influence on shear strength in the gneiss and quartz
ite samples. Results of the laboratory testing and model 
fitting are summarized in table 16. 

As part of the laboratory work, a Schmidt L-hammer 
was used to take several measurements of hardness (i.e., 
joint wall compressive strength) on the surface of each of 
the fractures. These measurements then were averaged 
for each fracture and compared across the three rock 
types. Because there was so little variability among the 
results (values ranged from 36 to 44 on the hardness 
index), it was concluded that hardness could be considered 
uniform for all these specimens and could be ignored in 
subsequent analyses aimed at predicting shear strength. 
Thus, fracture roughness in conjunction with applied nor
mal stress seemed to be the principal input needed to esti
mate peak shear-strength envelopes for such fractures. 

SHEAR STRENGTH ESTIMATES 
FROM ROUGHNESS MEASURES 

The initial goal of this project was to predict shear
strength envelopes as a function of roughness, hardness, 
and applied normal stress. As discussed above, fracture 
hardness was dismissed as having any significant influence 
on the specimens being studied here. This left three 
roughness measures to be considered: the fractal dimen
sion(obtained from the slope of the log-log fractal plot), 
the y-intercept from the log-log fractal plot, and the Zz 
measure. 

To investigate basic relationships between each rough
ness measure and each of the nonlinear shear-stJ:ength 
envelopes (estimated from the direct-shear tests), cor
relation coefficients were computed and then correlation 
matrix (table 3) was constructed based on the 12 direct
shear tests of the 6 fractures (tables 10 and 16). These 
correlation values indicated that the roughness measures 
significantly influenced the shape parameters of the 
strength envelopes (fig. 10) and that D and the Zz measure 
were significantly negatively correlated. (Recall that a 
correlation coefficient of 1.0 indicates perfect positive 
correlation, while -1.0 indicates perfect negative correlation 
in a linear sense.) If the median or the maximum value 
of the roughness measures were used for each set of 
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Figure 10.-Examples of direct-shear test results. Each trace 
represents application of a specified normal load. A, Plot of 
shear load as a function of shear displacement; B, peak shear
strength envelope fitted to test data, where". = A un

B• (". = 
shear stress; A and B = curve parameters; and un = normal 
stress.) 

10 parallel proftles instead of mean value, results were 
similar (table 3). 

Some correlation was shown between the curve param
eters A and B, but not enough to discourage the use of 
these parameters as independent terms in subsequent 
least squares regression modeling. The following linear 
regression models were applied to the data set: 

A = Po + P1D 
A = Po + PII 
A = Po + PI~ 
A = Po + P1D + P2I 
A = Po + PID + P2I + P3~ 

B = Po + PID 
B = Po + PII 
B = Po + Pl~ 
B = Po + P1D + P2I 
B = Po + PID + P2I + P3~ 

where ith regression coefficient 

and I fractal intercept. 
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The latter two models represent general "hyperplanes" 
in multidimensional space. The merit of each model was 
judged using an index of determination R1, which is anal
ogous to the coefficient of determination (Le., squared cor
relation coefficient) for simple linear regression. This 
index can be defined as follows: 

where measured value of dependent variable, 

Yi value of dependent variable estimated 
from regression model, 

and -y mean value of dependent variable. 

None of the models showed an index greater than 0.6 
for both A and B predictors except the model in which all 
three roughness measures were used. This model's indices 
were 0.625 for the A model and 0.765 for the B model. 

Thus, based on the 12 direct-shear tests of clean frac
tures at low normal stresses, the curve parameters A and 
B for the shear-strength envelope 'T = Au! can be esti
mated from the roughness measures, where A = 4.295 
- 1.022 (D) - 0.201 (I) - 1.352 (Z2) , and B = -1.449 
+ 0.568 (D) + 0.412 (I) + 0.076 (Z2)' 

In developing such models for the experimental data 
set, it was observed that the fractal intercept is at least as 
important as' the fractal dimension for describing surface 
roughness and its subsequent influence on the shear 
strength of clean fractures. 

To evaluate the effectiveness of these models, they 
were used to generate synthetic shear-strength envelopes 
and then to compare these envelopes with the actual 
envelopes produced by laboratory direct-shear tests. Ex
amples are presented in figure 11 for two of the fractures. 
Both generated envelopes seemed reasonably compatible 
with actual envelopes, although the generated envelopes 
tended toward a hypothetical "mean" envelope for all tests 
considered here. 

In testing for the influence of roughness on shear 

strength, equations of the form T = PID (0':20) were also 
considered. The successful estimation of the coefficients 
PI and P2 by nonlinear least squares regression demon
strated that fractal measures can be used to predict shear
strength envelopes. However, the sparseness of data by 
rock type in this particular study prevented pursuing these 
particular models. 

Thus, it can be seen that nonlinear, power-curve-type, 
shear-strength envelopes for natural rock fractures can 
be predicted using three objective roughness measures: 
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Figure 11.-Generated synthetic (solid line) versus actual 
(dashed line) peak shear-strength envelopes for two natural rock 
fractures. (A = basalt and B = gneiss.) 

fractal dimension, fractal intercept, and the Zz measure. 
Two important observations were made in the early stages 
of the study: 

1. Parallel profl1es of fracture roughness are inde
pendent of each other when spaced as closely as 5 mm 
apart (implying the difficulty of selecting one particular 
proflle to represent the entire topography of a surface). 
Even averaging the results from several parallel proflles 
may not provide representative roughness measures for a 
fracture surface. 

2. Shear strength along natural fractures is often an 
anisotropic property (i.e., shear strength can depend on 
direction of shearing). 

Use of the average (i.e., arithmetic mean), the median, 
and the maximum roughness measures for a set of parallel 
proflles was also investigated, but all yielded comparable 
correlations with strength envelope parameters. In addi
tion, none of these two-dimensional measures was deemed 
entirely satisfactory as a representative roughness value for 
a given fracture surface. 

CONCLUSIONS 

The photogrammetric method of collecting and digit
izing information from rock surfaces proved to be quite 
successful. Although not as precise as a mechanical pro
fllometer, photogrammetry is accurate enough for many 
situations. Additional studies should involve large-scale 
surfaces underground. 

Photogrammetry equipment is field portable. Photo
grammetry and subsequent stereo digitizing can produce 
reasonable estimates of fracture roughness measures, as 
well as permanent records of fracture surfaces that can 
be readily proflled in any direction or topographically 
mapped to generate detailed digital elevation models. 
These data characteristics make it possible to analyze 
three-dimensional properties of rock fracture roughness. 
This analysis includes descriptions of anisotropy based on 
two-dimensional covariance and/or spectral analysis or 
on surface fractals rather than on proflle fractals. Such 
studies can eliminate the uncertainty and possible errors 
in using only a few proflles (which often may not be rep
resentative) to characterize the roughness of an entire 
fracture surface. 

A shear strength model was developed using the x
direction data from the surface of a gneiss sample. It is 
quite possible that a different model would have evolved 
if both x- and y-direction input had been processed. In 
spite of using only one direction, however, the resulting 

shear strength model did a good job of curve fitting the 
available shear strength data from 12 samples-4 gneiss, 
4 basalt, and 4 quartzite. It was unfortunate that the 
hardness parameter proved to be insignificant when the 
available rock specimens were described; it was hypothe
sized that both parameters-roughness and hardness
would have generated a better model for shear strength 
computations than the model in which only roughness was 
used. 

The major focus of this work was to fmd a single 
parameter as a measure of the roughness of a rock frac
ture surface. This effort led to detailed analyses of four 
fractal dimension algorithms-box, divider, modified divid
er, and spectral. Of these algorithms, the modified divider 
was the easiest to implement and provided the best agree
ment with generated proflles of known fractal dimension. 
The spectral method proved to be least dependable. Both 
the divider and box methods required parameter adjust
ments for proper implementation. When applied to a 
family of proflles, the inter correlations between the four 
fractal measures proved to be disappointing. Furthermore, 
when compared to visual perceptions as to degree of 
roughness for a family of proflles, there was again a lack 
of consistency. The Zz measure was also computed 
throughout the analysis, but ~ alone was not sufficient to 
describe roughness. Although falling short of some of the 



project's goals, such as establishing a unique measure of 
roughness, the authors feel that alerting the scientific 
community to some of the shortcomings of the fractal 
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approach was a worthwhile endeavor, for such a detailed 
comparison of algorithms to empirical data has not been 
previously reported in the literature. 
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APPENDIX A.-PROCEDURES FOR CLOSE-RANGE PHOTOGRAMMETRY 

SPECIMEN DESCRIPTION 

For the photogrammetric work in the laboratory, three 
different rock types were used: basalt, gneiss, and quartz
ite. These types were chosen primarily because of conven
ience; they are the most readily available rock types in the 
area. Sedimentary rocks were excluded solely because 
there are no sedimentary formations in northern Idaho 
and eastern Washington. 

Two specimens of each rock type were collected, each 
containing a natural fracture. The specimens were then 
trimmed to 8- by 9- by 3-cm blocks having 1.5 cm of intact 
rock on either side of the fracture. This yielded 12 sam
ples (6 pairs of mated halves). The 12 trimmed and frac
tured specimens were then cast in quick-setting cement in 
a 10- by lO-cm mold to produce samples for direct-shear 
tests. 

EQUIPMENT FOR CLOSE-RANGE 
PHOTOGRAMMETRV 

The use of close-range photogrammetry was suggested 
by an article describing the successful use of this technique 
to measure wear on asphalt roads in California (1, pp. 530-
551).1 Although the highway project involved the use of 
two 35-mm cameras to take the photographs, only special
ized photogrammetric cameras or cameras that had been 
specially calibrated for photogrammetric work were con
sidered because the Bureau project required more precise 
measurements. 

Two Rollei2 single-lens reflex cameras with 80-mm Zeis 
lenses and two 34-mm-Iong extension tubes (fig. A-1) were 
selected. An 80-mm lens can focus to 1 m, which covers 
a viewing area 50 by 50 cm. By using an extension tube, 
the distance between the camera and the specimen could 
be narrowed to 38.5 cm, covering an area of 10 by 10 cm 
and enabling the image of the specimen to fill the frame. 
The extension tube and the lens had to be calibrated 
together at this distance. 

To provide support for the two cameras, a 3-ft by 2- by 
1/4-in aluminum bar was milled with a 1/4-in slot cut part 
way down the middle; the cameras were then bolted to the 
bar by 1/4-in screws passing through the slot in the bar to 
a tripod-mounting hole on the cameras. The slot allowed 
the distances between the cameras to be adjusted as 
desired. The bar was then bolted to the top of the stur
diest tripod available. The importance of the sturdiness of 

1ltalic numbers in parentheses refer to items in the list of references 
preceding this appendix. 

2Reference to specific products does not imply endorsement by the 
U.S. Bureau of Mines. 

the tripod cannot be overemphasized. Any shaking in the 
cameras when taking the pictures will result in blurry 
photographs, which will compromise the accuracy of the 
gathered data. A cable release is also recommended to 
help minimize camera shake. 

Sometimes small mounts containing rack-and-pinion 
gears allowing movement in both the x- and y-directions 
are helpful for fme tuning camera positions. The cameras 
are first attached to these mounts and then bolted to the 
aluminum bar. For photographing in the laboratory, a 
second tripod is handy for holding the specimen and its 
reference frame. The tripods should have a rack-and
pinion shaft to enable fine adjustments. This permits 
raising or lowering either the cameras or the specimen to 
obtain the desired framing. 

Figure A-1.-Photogrammetric setup showing two Rollei 
cameras mounted on support bar and rock specimen mounted in 
aluminum reference frame. 
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Photogrammetry requires both horizontal and vertical 
control in the picture area. This control allows calibra
tion of the digitizing and plotting equipment. For the 
laboratory samples, a 12- by 12-cm aluminum reference 
frame was fabricated. This frame had a 10-cm-square 
opening to allow insertion of the sample. Inscribed on the 
frame every few centimeters were crosshairs. These pro
vided horizontal control. The corners of the frame were 
elevated by approximately 1 cm to help provide vertical 
control. In addition, a 1-cm cube was attached to the 
frame for further vertical control. 

Color slide film (Ektachrome ASA 100) was used in
stead of negative film. The information was read directly 
from the positive slide images, and it was felt that this 
gave better resolution than converting negative film into 
prints and then analyzing the prints. The colored image 
also helped to obtain more accurate readings. 

EQUIPMENT CALIBRATION 

Usable cameras for photogrammetry are either metric 
or nonmetric. (Here, "metric" means measured.) The 
metric camera is constructed with either fiduciary marks 
(marks inside the camera on the ftIm plane that show on 
the negative) or a Reseau plate. The Reseau plate sits in 
the light path immediately in front of the film plane and 
has a grid on it that shows on the exposed film. Both 
fiduciary marks and the Reseau plate serve the purpose of 
helping to determine the amount of distortion in the film 
caused by buckling. 

A metric camera also comes with a scale that shows 
lens distortion at various focusing distances; it may also 
be equipped with a vacuum ftIm back to hold the ftIm 
perfectly flat against the platen. Such cameras as the 
Hasselblad MK70 are quite expensive, costing in excess of 
$20,000 for just the body and lens. 

Nonmetric cameras are not equipped with 'specialized 
equipment or scales of measurement. Examples are 
Hasselblad or Rollei cameras in the 70-mm2 format or 
Nikon, Pentax, or Leica cameras in the 35-mm format. 
These cameras need to be calibrated to be suitable for 
precise photogrammetry, which, if contracted out, can cost 
up to $1,000. 

Nonmetric cameras were chosen because they cost 
much less than metric cameras, even with the necessity of 
calibrating them. Nonmetric cameras can also be used for 
ordinary photography, thus saving the cost of additional 
photographic equipment for another research project. 

The calibration procedure requires first engraving 
fiduciary marks on the four corners of the film plane. 
These marks serve in place of the Reseau plate. 

Lens distortion must be measured at each planned 
picture-taking distance. At each position, the radial and 
tangential distortions are measured, and this information 

is later entered into the computer program used to run the 
analytic plotter. This enables the plotter to compensate 
automatically for lens distortion and unevenness of the 
ftIm. 

An analytic self-calibration computer program that 
enables individuals to calibrate their own camera systems 
is included in reference 23. This reference also includes 
sample input and output. 

PHOTOGRAPHIC PROCEDURES 

The following procedure was used for taking photo
grammetric pictures in the laboratory. The cement part of 
the specimen block was clearly marked as to top, bottom, 
left, and right and then placed in the aluminum reference 
frame. The block and frame were mounted vertically on 
a small platform attached to the top of a tripod. The two 
Rollei cameras were mounted on the rack-and-pinion 
gears attache(j to the aluminum bar and this bar was 
attached to the top of another tripod (see figure A-l). 
The cameras were moved back and forth on the bar until 
each camera had the same image and image size. The 
angle of inclination was also checked to ensure that it was 
the same for both cameras. 

This setup procedure was greatly facilitated by using a 
measuring tape to determine the distance from the top 
center front of the reference frame to the film plane of 
each camera. These distances should be equal. The 
height (horizontal distance) from the top center front of 
the reference plane to an imaginary line connecting the 
ftIm planes of the two cameras was also measured. This 
distance was a common side of two right triangles and so 
was used to calculate the actual measured distances. 

Two lights with daylight bulbs were positioned hori
zontally and vertically at 45° angles on each side of the 
specimen. The lights were placed at equal distances from 
the specimen to ensure uniform lighting. All other lights 
in the room were turned out and the windows were dark
ened. This ensured the correct color balance on the speci
men and helped maintain surface relief, which would have 
been smoothed by light from extraneous sources. 

The cameras were tripped successively by means of 
cable releases to minimize vibrations. The mirrors on 
each camera were locked upright to further reduce picture 
fuzziness caused by camera vibrations. 

A spot meter and gray card were used to determine 
light levels and exposure information. Light meter read
ings were taken from the gray card held immediately in 
front of the specimen. This combination was also used to 
check the evenness of the light intensity on different parts 
of the sample. These readings were compared with spot 
readings taken directly off the face of the sample. 

The shutter f-stop combination was chosen to give the 
maximum depth of field. Generally, the combination was 
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f22 or f16 at 1/15th of a second. Several combinations 
were used on each specimen, but each pair of pictures was 
always taken with the same combination. 

PHOTOGRAPH PROCESSING BY ANALYTIC 
PLOTTER 

Use of an analytic plotter made the photogrammetric 
approach possible. Without photogrammetry, it would 
have been too time consuming and expensive to measure 
the required number of points on a rock surface (over 
80,000 sets on a 9- by 9-cm surface). Such massive 
amounts of data could not have been generated using 
older mono and stereo comparators, which plot just one 
proftle at a time. The analytic plotter allows the X, y 
coordinates of a proftle and the density of points along the 
proftle to be set. The readings are recorded automatically, 
requiring an operator simply to set the initial conditions 
and monitor the process. 

The proftles were plotted with 4O-/Lm (0.04-mm) dots. 
This size is almost as large as the space between adjacent 
points, which makes it difficult to understand how points 
closer than one-half of 40 /Lm can be measured. An 
experiment was conducted in which the original 70-mm 
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negatives were enlarged 2.44 times to see if the enlarging 
process made a difference in the robustness of the data. 
This test is discussed in the section "Photographic En
largements" in appendix B. 

When the project was initiated, there were only a few 
firms in the continental United States with analytic plotters 
and only one firm in the Pacillc Northwest, Spencer B. 
Gross, Inc., of Portland, OR. A procedure evolved in 
which color slides (positives) of the specimen in the con
trol frame were sent to the firm along with measurements 
of the height (distance) of the cameras from the sample, 
the angle of convergence of the cameras, and the separa
tion distance. The company ran the proftles using a Wild 
stereo analytic plotter, model Avilyt BC1, and returned 
the X, y, z coordinates of the points on 5-l/4-in floppy 
discs using the American Standard Code for Informa
tion Interchange (ASCII) format. The data were then 
processed. 

In reading the proftle data from the photographs, 
investigators tried to obtain the most precise measure
ments the equipment was capable of making, which turned 
out to be 0.05 mm between points and between heights. 
Points closer than 0.05 mm or differing in height by less 
than 0.05 mm were treated as the same point. 
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APPENDIX B.-EVALUATION OF CLOSE-RANGE PHOTOGRAMMETRY 

ACCURACY ANALYSIS 

Accuracy Bar 

The purpose of an accuracy bar (fig. B-1) is to test 
photogrammetric results against a known standard. Know
ing how photogrammetric results compare to a known 
standard enables better characterization of the accuracy 
of the complete system. The standard was a milled alu
minum bar 10.2 cm long, 4 cm wide, and 2 to 2.5 cm high. 
Four tapered holes were drilled to various depths in the 
top. In addition, seven steps 2 to 4 mm high and 2 to 
4 mm wide were cut into the surface to test how accurately 
depth was measured when photogrammetry was used. The 
test bar was photographed, and the photographs were dig
itally processed by Spencer B. Gross, Inc., Portland, OR. 
Each trace covered all the steps and one or more of the 
holes. Between the traces, the traces covered all the holes. 

The same traces were sent to the University of Idaho, 
Moscow, ID, where they were measured with a mechan
ical transducer and with a metroplate and measuring dial 
with a long probe that penetrated to the bottom of the 
tapered holes and steps. Plots of one of the three traces 
depicting the three different measuring schemes are shown 
in figure B-2. 

It was necessary to use an appropriate statistical test 
to determine if the three measuring processes were or 

Figure B-l.-Accuracy bar in aluminum reference frame. 
Trace 1 runs through middle of bar encompassing two large 
holes and seven steps. 

were not equivalent. As the traces in figure B-1 indicate, 
it was not possible to match exactly the three reading 
positions on the horizontal axis. Therefore, to make rea
sonable comparisons of the three traces, the differences 
between the heights (z-values) at designated abscissas were 
compared (table B-1). 

Table B-l.-Table of differences, mill meters 

Photogrammetry Mechanical Metroplate 
transducer 

TRACE 1 

5.94 5.85 6.2 
5.97 5.82 6.12 
7.49 7.77 7.67 
7.54 7.74 7.63 

TRACE 2 

0.02 0.02 0.005 
1.30 1.41 1.4122 
1.33 1.41 1.4046 

.01 .03 .0025 

TRACE 3 

1.88 2.03 2.027 
1.85 1.95 1.973 
1.87 2.0 1.991 
7.54 7.74 7.63 
1.83 1.99 1.987 
1.77 1.99 2.006 
1.05 1.08 1.046 

10.79 11.19 11.153 
2.57 2.73 2.718 
2.66 2.73 2.713 

This process was possible even though the abscissa 
points did not exactly match. This was because the accu
racy bar is uniformly flat, except for the steps and the 
drilled holes, and so the abscissa coordinates on a flat 
surface did not matter when determining the differences 
between measured heights of two differing-in-height flat 
surfaces. 

A randomized block design analysis-of-variance model 
(14) was the statistical method used. Either by inspect
ing the data or using the ensuing F-statistic, it can be seen 
that the traces vary significantly from each other. The 
point of interest is to compare the three measuring 
procedures-photogrammetry, metroplate, and mechan
ical transducer. The resulting sample F-statistic of com
parison is F(2,39) '" 3.04. At the 0.95 significance level, 
the tabular F-statistic is 3.21. Because the sample statis
tic is less than the critical level statistic, the conclusion 
is that the three methods are not statistically different. 
Thus, photogrammetry is an acceptable method of data 
collection. 
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Figure 8-2.-Three different measuring methods on trace 1 (middle trace) of accuracy bar. 

Photographic Enlargements 

In conducting geostatistical analyses of the proflle data 
sets, unexplainable perturbations in the results were found. 
A possible reason was the size of the dot (40 J..lm) on the 
analytic plotter. The operator uses this dot to pick the 
points for digitizing. Because the sampling density was 
0.05 mm, only O.Ol-mm spaces were left between points, 
which could result in the same point being read for two 
different points. Thus, the data would be smoothed out, 
there would be less variability, and the roughness of the 
proflle would be less. 

To see if the dots were overlapping, a copy of a 
slide was enlarged 2.44 times from the original 2-1/4- by 
2-1/4-in slide. This enlarged slide was then processed 
using the same profiles as on the original slide. 

The enlarged slide was more convenient for the plotter 
operator to use, but did not necessarily generate more 
accurate measurements because of distortions introduced 
by the photographic process. The data were probably 
improved because of the easier pace of data sampling, 
which may minimize the perturbations seen in original 
data sets. 

The results showed that indeed there was some 
smoothing of the data when the smaller slide was used 
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Figure e-3.-Comparlson of profiles using original and 
enlarged slides. A, Profile of GHJ from original 2-1/4- by 2-1/4-
In slldej B, prOfile of GEHJ from slide enlarged 2.44 times. 

(figure B-3 and table B-2). This smoothing, however, was 
not enough to affect the calculated values of the rough
ness measures in any significant way. For all practical pur
poses, then, the smaller slide was appropriate to use even 
at a point density of 0.05 mm. 
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Table B-2.-Summary statistics comparing an original 
profile (GHJ) to its enlargement (GEXJ) 

GHJ GEXJ 

Data points In sample ....... . 

Standard deviationl .•.•.•.... 

Variancel .•................ 

Standard deviation number2 •••• 

Variance number2 ••••.••••••• 

Skewness ................. . 

873 

lEstimators for population using (n • 1). 
2Estimators for sample using n. 

.75146 

.564692 

.75103 

.564045 

.134612 

896 

COMPARISON OF PROFILOMETER 
AND PHOTOGRAMMETRY 

.76746 

.588993 

.767031 

.588336 

. 129583 

For the initial investigation of photogrammetry, it was 
necessary to evaluate its usefulness and effectiveness 
as compared to more traditional ways of collecting data. 
To this end, a test procedure was set up and arrangements 
were made for Lawrence Livermore Laboratories of Liv
ermon~, CA, to measure proftles of a given sample. The 
proftles were then remeasured using the photogrammetric 
technique and the results from the two methods were 
compared. 

Data Collection 

For the comparative study, an irregularly shaped, silty 
quartzite specimen containing a natural fracture and 
trimmed to 8 by 9 by 3 cm was chosen. To facilitate the 
proftlometric and photogrammetric studies (as well as 
future direct-shear tests), each half of the specimen was 
cast in quick-setting cement in a 10- by 10-cm mold, 
leaving an exposed fracture surface that could be meas
ured for surface roughness. Dilly one of these fracture 
surfaces was analyzed during the study. 

Profilometric Measurements 

William Durham, a rock mechanics researcher who has 
been studying rock fracture topography as part of a larger 
investigation in fluid flow mechanics in fractured rock, 
supervised the proftlometric measurements at Lawrence 
Livermore Laboratories. Technicians proftled f-our par
allel traces spaced 2 cm apart in a defmed x-direction 
(width) and four in a corresponding y-direction (length) 
using a proftlometer. The tip of the proftlometer stylus is 
semirounded and has a nominal width of approximately 
0.0015 in. The tip leaves a faint "scribe" line on the frac
ture surface as each trace is proftled. These marks were 
used to align and register the stereo plotter so that the 
same eight traces could be digitized with photogrammetric 
methods. 

Elevation measurements were taken at increments of 
0.002 in (0.0508 mm) along each of the eight traces. The 
horizontal distance was recorded in inches, while the 
elevations were recorded as voltage generated by the 
stylus. Both types of measurements were subsequently 
converted to millimeters. Traces 1 to 4 in the x-direction 
were approximately 60 mm long, while traces 5 to 8 in the 
y-direction were approximately 70 mm long. The resulting 
proftles are presented in figure B-4 . 

Photogrammetry and Stereo Digitizing 

The rock specimen was photographed at the Bureau's 
Spokane Research Center (SRC) under strict photogram
metric guidelines. The two cameras were aimed at the 
fracture surface at a convergence angle of 9.so for each 
camera. The base distance between the midpoints of the 
two ftlti1 planes was 128 mm. The perpendicular distance 
from each ftlm plane to the center of the fracture surface 
was 385 mm, while the perpendicular distance from the 
baseline to the fracture surface was 380 mm. The 34-mm 
extension tubes made it possible to photograph the rock 
fracture surface at close range for maximum image size 
and to focus the lenses at infmity for concurrence with 
photogrammetric calibration factors. The exposure time 
was 1/125 s at f16. 

The two sets of proftles (fig. B-4) had different starting 
coordinates arbitrarily located along a horizontal reference. 
To align, or register, a given pair of profiles, the horizontal 
coordinate corresponding to the minimum elevation on the 
stereo-digitized proftle was matched to the same location 
on the proftlometric proftle. A new arbitrary horizontal 
axis was then defined. Using the new axis, the proftles 
were truncated, if necessary, so that each set of matched 
proftles had approximately the same beginning and ending 
points in the horizontal plane. Proftles were registered in 
the vertical plane by subtracting the mean elevation of a 
given proftle from each of its recorded elevations and 
adding 5 mm. This resulted in all proftles being centered 
about an arbitrarily defmed mean elevation of 5 mm. 

Measurement Repeatability 

During the proftlometer exercise, proftle 1 was digitized 
twice so that a replicate would be available to estimate 
measurement repeatability of the proftlometer. All eight 
proftles were digitized twice with the stereo digitizer, 
although oilly proftle 1 was used in the comparisons. Sum
mary statistics for the absolute values of deviations (i.e., 
I Zl - Z21, where Zl and Z2 = the corresponding elevations 
from the original trace and the replicate trace, respec
tively) are given in table B-3 and indicate that the 
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Figure B-4.-Roughness profiles for rock fracture surfaces at 2.5 times vertical exaggeration. Profiles 
1·4 are In x-direction and profiles 5-6 are In y-direction. A, Profilometer results; B, photogrammetry results. 

repeatability of the mechanical proftlometer was approx
imately twice as good as that of the stereo digitizer. The 
quartile values and the relatively large standard deviations 
are representative of probability distributions skewed to 
the right. 

Table B-3.-Summary statistics for absolute deviations 
In measured elevations obtained by repeating 

dlgltlzatlon of profile 1, millimeters 

Method 

Profilometer .. 
Stereo digitizer 

Mean Standard Lower 
deviation quartile 

0.012 0.013 0.0042 
.028 .033 .0057 

Median Upper 
quartile 

0.0082 0.0132 
.0157 .0357 

The upper quartiles indicate that 75 pct of the absolute 
deviations from the mechanical proftlometer were less than 
0.0132 mm, whereas 75 pct of the absolute deviations from 
the stereo digitizer were less than 0.0357 mm. Thus, con
servative estimates of measurement errors for the eleva
tion data were approximately ±0.02 mm for the proftlom
eter and ±0.04 mm for the stereo digitizer. 

Comparisons of Roughness Data 

One way of comparing the proftle data obtained by the 
two different methods was to use a matched-pairs t-test on 
elevation data recorded along the same proftle. However, 
because of the slightly different digitization interval used 
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in the two methods (0.002 in for the profllometer versus 
0.05 mm for the stereo digitizer), it was impossible to 
match up any two corresponding points precisely. Further
more, an inspection of the original proflle data flles 
showed that for any given proflle, the horizontal increment 
was not a constant, but deviated slightly from the specified 
spacing. Thus, for comparative purposes, local means 
were computed in nonoverlapping neighborhoods (cells) 
approximately 0.6 mm wide, each of which contained about 
12 original observations. Although this procedure pro
vided smoothed elevation values, the new set of roughness 
observations was more compatible with the basic statistical 
assumptions of independence and normality upon which 
matched-pairs t-tests are based. In contrast, neither as
sumption was very well satisfied by the original roughness 
measurements; only three of the eight proflles had eleva
tion data that approximated a normal distribution, and all 
proftles contained spatially dependent elevation data. 

The matched-pairs t-test was conducted according to 
guidelines from Dixon and Massey (18, pp. 119-121). The 
value of the t-statistic is computed as follows: 

where 

and 

-
d arithmetic mean of paired differences 

1 n 
= - .E I (xl - x2)d , 

n i = 1 

s = standard deviation of paired differences, 

n number of paired differences (number of 
local means). 

The null hypothesis, that the compared proflles were 
the same, would have been rejected if the calculated 
t-value exceeded 1.99, which is the critical value for typ
ical n values at a significance level of 0.05. For each 
t-calculation, the corresponding probability of obtaining 
at least the absolute value of the t-statistic was also cal
culated. A high-probability value implied that the paired 
proflles were very similar. 

Results from the matched-pairs analyses are given in 
table B-4 and indicate that for all eight proflles, there is 
negligible difference between the use of the profllometer 
or the stereo digitizer with regard to roughness data ex
pressed as local means. This fmding was further con
firmed by linear regressions of the paired proftle data, 
which yielded correlation coefficients greater than 0.98 in 
all cases. The repeatability trials shown in the last two 
rows of table B-4 imply that the stereo digitizer was better 

than the profllometer at reproducing consistent values of 
local means of the elevations along a proflle. 

Table B-4.-Matched-palrs comparisons of local means 
for roughness data obtained by mechanical 
profilometer (MP) and stereo digitizer (SD) 

Matched Calculated Probability Linear correlation 
profiles t-statistic value coefficient 

MP1-S01 0.02 0.9839 0.9928 
MP2-S02 -.04 .9657 .9810 
MP3-803 .04 .9710 .9980 
MP4-S04 -.04 .9680 .9840 
MP5-S05 .03 .9800 .9929 
MP6-S06 ...... .05 .9639 .9946 
MP7-S07 ...... .04 .9644 .9910 
MP8-S08 ...... 0 .9998 .9926 
MP1A-MP1B .... .13 .8955 .9999 
S01A-S01B .... .04 .9719 .9985 

To evaluate the influence of the size of the averaging 
window, the interval width was varied from about 0.4 mm 
(8 observations per cell) to 1.2 mm (24 observations per 
cell). The resulting t-values were small and did not sig
nificantly differ from those presented in table B-4. 

A two-sample variance test (0'1 versus 0'2) based on an 
F-statistic (14, pp. 285-286) also was applied to the 
roughness proflles. The null hypothesis would have been 
rejected if the calculated value (F = ada2) exceeded the 
critical F-value, which equaled 1.12 for n values typical 
of these proflles at a significance level of 0.05. 

The variances and calculated F-value for the detrended 
data (table B-5) indicated that (1) variances from paired 
proftles were similar, but not strongly so; (2) roughness 
data generated by the stereo digitizer generally had 
smaller variances than data from the profllometer; (3) ani
sotropy was apparent in the fracture roughness, and the 
x-direction proftles were consistently rougher (i.e., higher 
variance) than the y-direction proflles; and (4) detrended 
roughness data provided a more reasonable basis for com
paring proftles than did the raw data because variances in 
the raw data were influenced by trends. 

Comparisons Based on Derived 
Roughness Measures 

An empirical equation developed by Tse and eruden 
(44) was applied to the proflle data to estimate values of 
joint roughness coefficient (JRe). This procedure is based 
on the ~ measure (root mean square of the first deriva
tive ofthe proflle) (38) and relies on a digitization interval 
of 1.27 mm. To meet the interval requirement a cubic 
spline interpolation scheme was used to generate new 
elevation values at a constant spacing of 1.27 mm, which 
produced proflles with approximately 50 observations each. 
After computing the ~ for each proftle, the empirical 
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equation JRC = 32.2 - 32.47 log (Z2) was used to predict 
a JRC value (table B-6). With the exception of profiles 5 
and 6, the stereo digitizer and the profllometer provided 
nearly identical JRC values. Also, the stereo-digitizer
derived JRC values generally were slightly less than those 
derived from the profllometer. 

A deterministically derived, nonergodic covariance 
estimator (C) was used to compute the geostatistical 
covariance of elevations along each of the profiles. This 
estimator [(adapted from Isaaks and Srivastava) (27)] is 
defined as: 

where 

1 [N(h) 
C (h) = -- L z(xi) z(xi + h) 

N(h) i = 1 

h separation distance, or lag, 

N(h) number of sample pairs separated by 
lag h, 
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and z(x) = data value at location x. 

The original definition of this estimator relied on spatial 
integrals and was an extension of earlier time-series work 
by Anderson (2); further explanations are beyond the 
scope of the current discussion. Suffice it to say that this 
covariance model has several mathematical advantages 
over traditional, probabilistic models of covariance (27), 
one of which is nonreliance on a stationary mean. 

Elevation covariance was computed for each of the 
roughness profiles using lag cells 0.1 mm wide. An 
example covariance plot is given in figure B-5, which 
displays the results as complement covariance (i.e., 
variance minus covariance) and resembles a traditional 
variogram. The covariance estimates obtained from the 
detrended elevation data provided paired values that could 
be analyzed with the matched-pairs t-testdiscussed earlier. 
Results of the t-tests (table B-6) indicated that roughness 
data collected by the profliometer and the stereo digitizer 
had similar covariances. Differences in the matched co
variance values were caused primarily by differences in 
variances. 

Table B-S.-Sample variances and calculated two-sample F-statistlcs 
for roughness data obtained by mechanical profilometer (MP) 

and stereo digitizer (SO), square millimeters 

Profile Raw data Detrended data 

MP var SD var F-value MP var SD var F-value 

x-DIRECTION 

1 ... , .... 0.5367 0.4821 1.113 0.1912 0.1871 1.022 
2 ........ 1.9468 1.8032 1.080 .4687 .4430 1.058 
3 "' ..... 1.6388 1.4550 1.126 .2444 .2246 1.088 
4 ........ .3695 .3239 1.141 .2553 .2342 1.090 

y-DIRECTION 

5 ........ 0.5313 0.5696 1.072 0.1642 0.1579 1.040 
6 ........ .5209 .5505 1.057 .0929 .0803 1.157 
7 ........ .2994 .2699 1.109 .0637 .0597 1.067 
8 ........ 2.7014 2.3481 1.150 .1267 .1375 1.085 

var Variance. 

Table B-6.-Comparative roughness measures for rock fracture profiles obtained 
by mechanical profllometer (MP) and stereo digitizer (SO) 

Estimated Covariance matched pairs C(O) profile Fractal 
Profile JRC Calculated Probability length dimension 

MP SD t-statlstic MP SD MP SD 

1 10 11 -1.39 0.172 0.0032 0.0032 1.262 1.120 
2 19 18 -.17 .866 .0079 .0075 1.145 1.074 
3 13 12 -.33 .745 .0041 .0038 1.194 1.071 
4 12 11 -.95 .346 .0043 .0040 1.140 1.058 
5 7 4 -1.16 .253 .0025 .0024 1.275 1.091 
6 6 2 .06 .950 .0013 .0011 1.269 1.114 
7 2 1 -.39 .696 .0009 .0008 1.223 1.094 
8 10 9 .72 .478 .0022 .0024 1.229 1.123 
C(O) Covariance of estimator. 
JRC Estimated Joint roughness coefficient. 
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Figure B-5.-Complement covariance plot for elevations measured along profile 4 using mechanical profilometer. 
(Number of data points = 1,161; width of lag cells = 0.1 mm; sample mean = 0.5 mm; and sample variance 
= 0.3695 mm2). (h = separation distance or lag.) 

Another means of comparing the results of the two 
profiling methods was based on the Yxx(Q) parameter 
proposed by Wu and Ali (47). In this scheme, Yxx(O) is 
equal to the covariance of estimation [C(O)] divided by 
profile length; smooth fractures are those with Yxx(O) less 
than 0.2. As shown in table B-6, there was excellent 
agreement between the two methods. The small values 
seemingly indicated a fairly smooth fracture surface, but 
based on experience, the investigators do not agree with 
Wu and Ali's criterion. 

The final comparison was the fractal dimension, which 
is a measure of how much a surface profile fills its topo
logical space (10, 32). Most rock fracture profiles have 
fractal dimensions between 1.0 and 1.5, where a higher 
number indicates a rougher surface. Using the criteria 
suggested by Brown (12), the fractal dimension of each 
profile was calculated by the divider method, taking care 
to magnify the elevation values sufficiently to avoid under
estimating the fractal dimension. These computed fractal 
dimensions are presented in table 1. The fractal dimen
sions calculated using the stereo digitizer were approxi
mately 10 pct less than those obtained from the proftlom
eter, which indicated that (1) some smoothing was invoked 
on the roughness data during the photogrammetric and 
stereo-digitizing procedures and/or (2) the profilometer 
method had some random noise induced by variability in 
electrical current during voltage readings or by differences 
in rock hardness. 

The differences in paired fractal dimensions also sug
gested that the fractal dimensions were quite dependent on 
the finest available scales of measurement. This notion 
was verified by computing the fractal dimensions of pro
filometer profiles smoothed by a three-point, moving
window averaging scheme; this scheme typically reduced 

the calculated fractal dimension by 1 to 5 pct. Further 
evidence for the importance of the digitizing increment 
was shown by the relatively small fractal dimensions of 
profiles 2, 3, and 4. Earlier studies, where the first four 
traces (x-direction) were rougher than the last four traces 
(y-direction), indicated anistropy in surface roughness. 

Therefore, in this study, the evidence suggests that the 
fractal dimension may not be the same type of roughness 
measure as that used by other investigators. It appears 
that fractal dimensions may be influenced heavily by short 
wavelength components of a fracture surface, whereas 
variance-based and Z2-type parameters may depend more 
on longer wavelength components. More research is 
planned to investigate such relationships. 

Conclusions on Comparing Photogrammetry 
and Profilometers 

Close-range photogrammetry and stereo-digitizing pro
vided a means to measure rock fracture rbugliness. With 
the capabilities of current equipment, stereo digitizing had 
slightly poorer resolution in the horizontal plane and 
slightly less accurate repeatability in the vertical plane than 
mechanical profilometers when laboratory-scale rock 
specimens were examined. 

Five statistical comparisons and four derived rough
ness measures (visual, JRC, Yxx(O) , and fractal dimen
sion) were used to compare close-range photogrammetry 
and stereo digitizing as methods of mealluring rock frac
ture roughness. Of the nine comparison criteria, seven 
indicated no significant difference between the tech
niques. Thus, reasonable compatibility between profilom
eter methods and stereo-digitizing methods has been 
established. 
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